Deducing acidification rates based on short-term time series
نویسندگان
چکیده
منابع مشابه
Deducing acidification rates based on short-term time series
We show that, statistically, the simple linear regression (SLR)-determined rate of temporal change in seawater pH (βpH), the so-called acidification rate, can be expressed as a linear combination of a constant (the estimated rate of temporal change in pH) and SLR-determined rates of temporal changes in other variables (deviation largely due to various sampling distributions), despite complicati...
متن کاملTime Series Forecasting Based on Augmented Long Short-Term Memory
In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...
متن کاملOverview and Comparison of Short-term Interval Models for Financial Time Series Forecasting
In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...
متن کاملA New Short-term Power Load Forecasting Model Based on Chaotic Time Series and SVM
This paper presents a model for power load forecasting using support vector machine and chaotic time series. The new model can make more accurate prediction. In the past few years, along with power system privatization and deregulation, accurate forecast of electricity load has received increasing attention. According to the chaotic and non-linear characters of power load data, the model of sup...
متن کاملShort-term time series forecasting based on the identification of skeleton algebraic sequences
A new short-term time series forecasting method based on the identification of skeleton algebraic sequences is proposed in this paper. The concept of the rank of the Hankel matrix is exploited to detect a base fragment of the time series. Particle swarm optimization and evolutionary algorithms are then used to remove the noise and identify the skeleton algebraic sequence. Numerical experiments ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2015
ISSN: 2045-2322
DOI: 10.1038/srep11517